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We study the linear stability of a vertical, perfectly concentric, core-annular flow in 
the limit in which the gap is much thinner than the core radius. The analysis includes 
the effects of viscosity and density stratification, interfacial tension, gravity and 
pressure-driven forcing. In the limit of small annular thicknesses, several terms of the 
expression for the growth rate are found in order to identify and characterize the 
competing effects of the various physical mechanisms present. For the sets of 
parameters describing physical situations they allow immediate determination of 
which mechanisms dominate the stability. Comparisons between the asymptotic 
formula and available full numerical computations show excellent agreement for 
non-dimensional ratio of undisturbed annular thickness to core radius as large as 0.2. 

The expansion leads to new linear stability results (an expression for the growth 
rate in powers of the capillary number to the 4 power) for wetting layers in low- 
capillary-number liquid-liquid displacements. The expression includes both capil- 
larity and viscosity stratification and agrees well with the experimental results of Aul 
& Olbrich (1990). 

Finally, we derive Kuramoto-Sivashinsky-type integro-differential equation for 
the later nonlinear stages of the interfacial dynamics, and discuss their solutions. 

1. Introduction 
To recover oil which is saturating capillary pores in a rock bed one can flush with 

a second, immiscible liquid, usually an aqueous solution of low interfacial tension 
with the oil. The type of flow pattern which develops as the aqueous phase displaces 
the saturating oil depends on the wetting properties of the oil and the aqueous 
solution. If the oil wets the pore wall more strongly than the aqueous phase, then the 
displacement takes the form of a winding train of long aqueous slugs separated by 
pools of oil and riding over a thin cushion of the oil. Alternatively, if the aqueous 
solution is more strongly wetting, then the fluids change places, and the displacement 
consists of slugs of oil moving over an aqueous film. In either case, the hydraulic 
resistance of rock pores is usually large enough that the train velocities are small, and 
the flow capillary numbers C (defined as the product of the slug velocity U and the 
wetting layer viscosity divided by the interfacial tension) are usually much less than 
one. In addition, Reynolds numbers (defined as the product of the train velocity 
multiplied by the pore radius and divided by either the kinematic viscosity of the oil 
or the displacing phase) are commonly of order one or less. For these cases of small 
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C and order-one or less Reynolds numbers, the thickness of the wetting layer is set 
by the conditions at the leading edge of the slug, and is proportional, from the 
asymptotic theory of Bretherton (1961), to Cg. 

In the central region of the slug, the flow locally resembles a coreannular flow 
(CAF) with the non-wetting phase flowing centrally, and the wetting liquid moving 
in an annular ring. The interfacial stability of this CAF can significantly affect the 
mobility of the train. Growing interfacial disturbances can cause the wetting layer to 
snap and bring the non-wetting fluid in contact with the capillary pore wall. If the 
respreading of the wetting layer is slow or inhibited, then contact line forces now 
attaching the slug to the wall can retard t,he movement of the slug and decrease the 
overall train mobility. 

The aim of this paper is to study the linear stability of CAF in an effort to better 
understand the mobility of the train flows which develop in displacing oil with 
aqueous solutions. A first step is to examine the linear stability of a perfect 
core-annular flow (PCAF), which is a CAF in a vertical, precisely circular tube (radius 
R,) in which the core (undisturbed radius R,) and annulus are exactly concentric with 
the tube wall. Joseph and collaborators in a series of articles (Joseph, Renardy & 
Renardy 1984; Preziosi, Chen & Joseph 1989; Hu & Joseph 1989; Hu, Lundgren & 
Joseph 1990; Chen, Bai & Joseph 1990; Bai, Chen & Joseph 1992; Chen & Joseph 
1991 and Chen 1992) have used numerical and long-wave techniques to establish a 
detailed picture of the linear stability of a PCAF mainly to axisymmetric 
disturbances. 

Joseph and his collaborators find that when the interface separating the core and 
annular fluids is perturbed, the leading order (in the interfacial perturbation) 
capillary forces in a flowing system are identical to those in static liquid threads and 
annular wetting layers as studied by Plateau (1870) and Rayleigh (1879, see 
Chandrasekhar 1968), Tomotika (1935) and Goren (1962). They are independent of 
the base-state flow, and arise simply from the cylindrical geometry of the 
unperturbed fluid-fluid interface. In particular, the leading-order surface tension 
force arising from the circumferential curvature is destabilizing, while that from the 
axial curvature is stabilizing. For interfacial disturbances with wavelengths larger 
than the unperturbed core circumference, the destabilizing force dominates and these 
waves grow ; disturbances with wavelengths less than this circumference decay. 

In core-annular flows, the jump in the radial derivative of the axial base-state flow 
velocity generates a jump in the first-order axial velocity at  the interface when the 
fluids are of unequal viscosity. It also leads to a jump in the first-order shear stress 
when the fluids are of unequal density and the flow is in a vertical tube and driven 
(at least partly) by gravity. The jump in axial velocity destabilizes short waves. The 
axial velocity jump can also destabilize long waves, but only when the annular fluid 
is more viscous than the core fluid ; it stabilizes these waves when the annular layer 
is less viscous. Joseph and his co-workers demonstrate that the interplay of the effects 
of capillarity and the jump in axial velocity can give rise to a window of global 
stability: when the annulus thickness is much less than the core radius and the 
annular fluid is less (but not much less) viscous than the core, the long-wave 
stabilization due to the velocity jump stabilizes, at sufficiently large Reynolds 
numbers, all waves larger than the core circumference. These wavelengths would 
have been destabilized by capillarity. Waves shorter than the circumference are 
stabilized by capillarity; thus for these large Reynolds numbers, the CAF is stable 
to all disturbance waves. This stabilization persists to even higher values of the 
Reynolds number until the short-wave destabilization arising from the velocity jump 
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causes short waves to become unstable. This high-Reynolds-number instability 
exists as a band of unstable waves since the capillarity stabilizes the very shortest 
waves (cf. Chen 1992). When the annulus is more viscous, no such window exists; 
both capillarity and the axial velocity jump destabilize long waves and the axial 
velocity jump alone destabilizes short waves. 

In vertical tubes with combined pressure and gravity forcing, as the density of the 
annular phase becomes larger than that of the core, the jump in tangential stress 
caused by the density difference stabilizes long waves when the flow is in the 
direction of gravity (downflow), but destabilizes them when the flow is against 
gravity (upflow). All of these results pertain to axisymmetric disturbances of 
core-annular flows ; the effects of non-axisymmetric disturbances have not been 
systematically studied. 

The objective of this study is to understand the stability of PCAF with thin layers 
in order to draw conclusions on the ability of wetting layers around slugs to remain 
intact. The studies of Joseph and co-workers outlined above cannot directly apply to 
the thin-layer problems considered here for several reasons. First, the layers are 
extremely thin; the annular thickness can be one hundredth the size of the 
undisturbed core radius or smaller, i.e. 8 = (R,-R,) /R,  = a-  1 < lo-,. Numerical 
calculations become extremely difficult in this limit because of the rapid variation of 
hydrodynamic variables in the thin wetting layer, and would require special domain 
stretching in order to find solutions satisfying the conditions at  the ends of the layer. 
Indeed Joseph et al. have undertaken studies only down to E = 0.1. Also, Newhouse 
& Pozrikidis (1992), who use the boundary-integral technique for Stokes flow to 
follow an unstable wave’s growth, note that calculation of the Green function 
requires rapidly increasing computer times as E gets small. Second, our thin-film 
theory, as indeed any analytic theory, facilitates direct assessment of the importance 
of competing effects as well as the influence of the pertinent parameters. Finally, in 
the study of the stability of the wetting layer the computation of growth rates is 
essential in order to resolve how the timescale for the disturbance growth compares 
to the speed with which surface convection or dispersion moves the disturbance to 
the trailing edge of the slug; our analysis provides an easy method for generating 
such curves. 

To avoid numerical problems, we propose studying this thin-annulus stability by 
constructing asymptotic solutions to the linear growth rate in the limit as E + 0 with 
the wavenumber a and the viscosity ratio (annular to core fluid) m larger than 6. 
Since a is of order one, these asymptotic expressions describe dynamics for 
disturbances of the order of or larger than the core radius R,, but not of the order of 
the annulus thickness. (Chen & Joseph 1991 point out that when E is large or when 
m = O ( E )  and e is fairly small, the film’s inertia becomes significant, and thus we 
require m to be asymptotically larger than E . )  In fluid-fluid displacement problems, 
we have remarked that Reynolds numbers R are of order one or smaller, and so we will 
take R,, the square root of the Reynolds number for the purely gravity-driven flow, 
and F ,  the ratio of the axial pressure gradient to the gravitational force per unit 
volume, to be of order one. Values of J ,  the dimensionless quantity that characterizes 
the system’s surface tension, for these problems are much larger than one since J = 
Rm/@ and the capillary number is small; we therefore take J = O ( ~ / E ) .  Other 
smaller scalings for J are also considered and we will show that they can be derived 
from the J = O( 1 / ~ )  general expressions obtained by taking appropriate limits. 
Importantly, these other regimes are relevant to other CAP regimes such as 
lubricated pipelining where J is of order one or smaller in E .  
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FIQURE 1. Schematic of the circular tube geometry arranged vertically. 

Once derived, we use the growth rate expansion in E for the following purposes. 
First we show that the expansion, when used to construct neutral curves, can 
reproduce with exceptional accuracy the lower (order-one) branches of the (R, ws. a) 
and (F us. a) plots obtained numerically by Joseph et al. for E as high as 0.2. Second, 
we construct neutral curves for the case of m > 1 and we detail growth rates for both 
m > 1 and m < 1. Third, using the Bretherton analysis in conjunction with our 
asymptotic expansion, we develop a theory for the stability of the wetting layer 
surrounding liquid slugs moving at  low capillary numbers and show that it predicts 
the results of Aul & Olbricht’s (1990) experiments on liquid-liquid displacements in 
capillary tubes. We conclude with a brief description of how the expansion can be 
incorporated into a weakly nonlinear theory of the interface’s stability. 

We should note that PCAFs occur in straight channels with unchanging cross- 
sections, and our application of the results of PCAF stability theory to the stability 
of wetting layers in slug flows in porous media ignores the tortousity and constrictions 
of the pore channels of real rock strata. The presence of constrictions enhances the 
destabilizing effect of capillarity because the circumferential curvature is smaller, 
and the surface-tension force arising from this curvature is correspondingly larger. 
Gaugliz & Radke (1990) and Ratolowski & Change (1989) have examined this effect 
for the capillary growth of a thin static film deposited on the inside of a straight tube 
with an axisymmetric constriction. Our asymptotic analysis could include the 
influence of constrictions to some extent by considering a varying tube radius for 
which the lengthscale of the axial variation in the radius is much larger than the 
tube radius. As a first study, however, we restrict our attention to tubes of constant 
cross-section. 

An outline of this study is as follows. In $2 we formulate the linear stability 
problem, and derive the exact governing equations in terms of non-dimensional 
variables. In $3  we derive the long-wave expansions for the exact problem and then 
for the asymptotic analysis. The long-wave expansions anticipate the orderings that 
we use to construct the asymptotic expansions in $4. With these orderings in mind 
we use scaling arguments to set up asymptotic solutions in the film and in the core 
which, when matched, produce the linear stability dispersion equations for the first 
two non-trivial orders in E .  In $$5, 6 and 7 we discuss results and applications as 
described in the previous paragraph. 
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2. Formulation of the exact linear stability theory 
Two immiscible, Newtonian, incompressible fluids are flowing in a perfect 

core-annular arrangement in a vertical pipe of inner radius R,. The interface is given 
by r = R,. A fluid of viscosity p, and density p1 occupies the core region 0 < r < R,. 
A second fluid with viscosity p, and density p, occupies the film region R, < r < R,. 
We use cylindrical polar coordinates ( r ,  8, z )  with the z-axis oriented in the direction 
of the gravitational acceleration g (see figure 1). Gravity and a uniform, constant 
pressure gradient - dP/dz = f drive the flow. The velocity field is unidirectional and 
depends only on r .  Non-dimensionalizing the velocity by the gravity scale [pl gR1/pl] 
and the radial coordinate by the unperturbed core radius R,, the base flow takes the 
following form : 

oi = [ O , O ,  w!(r)]  ( i  = 1, a) ,  (2.1) 

F+1 (l-rZ)+-(u,-l)+-lna, F+1 1-1 0 < r < 1, 
2m 

w;(r) = - 
4 4m 

F+1 1-1 
w!(r)  = -(a2-r2)--1n - , 1 < r < a ,  

4m 2m (L) 
where subscripts 1 and 2 denote the core and annular regions respectively. The non- 
dimensional parameters 

R 
(2.4) 

Rl 
F=-, f m = l  P , l=J, P a=-Z 

P19 P1 P1 

appear in (2.2) and (2.3) as a result of the non-dimensionalization proposed above. 
The parameter P is a measure of the effect of pressure forcing on the flow direction 
in a vertical tube; for 1 = 1, when F > - 1 the flow is downward, and when F < - 1 
pressure overcompensates for gravity and the flow is upward. When 1 is not equal to 
one, these demarcations are not strictly valid and mixed flow can occur. However, 
assuming that the density differences are not too great, when F < - 1 the flow is 
predominantly up and when F > - 1 the flow is predominantly down, and therefore 
in this paper we refer loosely to these ranges of F as ‘upflow’ and ‘downflow ’. 

Consider axisymmetric disturbances of the interface T ( Z ,  t )  = S(z ,  t )  which cause 
velocity disturbances to the core and annular base flows. All equations that follow 
are in non-dimensional form with radial and axial variables non-dimensionalized by 
R,, velocities by b1 gR1/pl] time by b , / ( p ,  gR,)] and pressure by [p: g2R:/p:]. Since the 
fluids are incompressible, introduction of a disturbance stream function Y, 

automatically satisfies the continuity equation for the velocity disturbance. 

8: 
The surface and the velocity disturbances can be ordered with a small parameter 

r(z , t )  = l + q ( ~ , t ) d + 0 ( 8 ~ ) ,  (2 .6)  

(2.7 1 
We then insert these expansions into the Navier-Stokes equations and kinematic and 
stress boundary conditions at the fluid interface. Decomposition of the resulting 
equations into normal modes 

(2.8) 

Y J r )  = e ( r )  + q ( r )  8+0(d2). 

!.q(r) = $*(r) exp [ia(z - ct)l, 
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D(D$l) = iaR:(wy-c) D?,h1, (2.9) 

D(D$,) = (2.10) 
m 

and 

where 
d2 1 d 

D a', 
dr2 rdr 

subscripts r denote differentiation, a is the wavenumber, c is the wave speed and w; 
is the non-dimensional base velocity in region i, subject to 

-< +l co and -~ ld'l< rn at r = o ,  
r r dr 

(2.11) 

(2.12) 

1 
-($l-$z) = 0 at r = 1,  (2.13) 

( m - l ) v  = 0 at r = 1 ,  
1 d$, d$2 F + 1  
r (T -T) -2m (2.14) 

[D$l+2a2$,]-m[D~2+2a2$r,]+r(Z-l)1;1 = 0 at r = 1,  (2.15) 

[D$2]+2mai- -$2 
. 

[' ] 
m d  
iar dr dr r 
__ 

and 

The dimensionless parameters 

(2.17) 

(2.18) 

appear in (2.9)-(2.17) as a result of the non-dimensionalization proposed above. R: 
is the Reynolds number for pure gravity-driven flow and J is a surface-tension 
parameter introduced by Chandrasekhar (1961) in his study of the capillary 
instability of jets of a viscous liquid in air. J* is included so that all of the notation 
is consistent with Chen et al. (1990), referred to hereinafter as CBJ). For the case 
of density-matched fluids (1 = 1 )  (Preziosi et al. 1989), the maximum base velocity V 
occurs at  the centreline, and the stability analysis does not depend separately on R, 
and F, but rather on these variables through the product 

(1 + F )  (m+az- 1)  
% 4m 

which defines a core Reynolds number R based on the centreline velocity (R = 

P1 RI VlPI ). 
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3. Long-wave expansions 
We now turn to the stability problem for the longest waves and for thin films. Our 

aim is to  see the €-dependence of the various effects and to anticipate the scalings for 
our more general asymptotic theory. Consider the stability problem for waves which 
are long with respect to  the undisturbed core radius R, .  Using Yih's (1967) method, 
we introduce a regular expansion in a for the stream function $i and the wave 
speed c :  

c = c[0]+c"]a+0(a2) ,  (3.1) 

and ki = $~01+$~11a+0(a2). (3.2) 

These expansions assume E to be an order-one quantity in a, and are thus exact long- 
wave expansions. Hickox (1971), Joseph and co-workers, and Smith (1989) (for the 
case m = 1) have computed do]  and cr1]  for E of order one. We consider here the 
behaviour as E + O .  

Substituting the above expansions into the governing equations and boundary 
conditions we find that do] is real and therefore does not contribute t o  the stability, 
but only to  a dispersion that makes waves move with a velocity different from the base 
velocity a t  the interface : 

( F +  1) (m- 1) 
((1 + E y -  1 ) 2  

c'ol-w;(l) = 
4m((l + ~ ) ~ + m - l )  

2 ( (  1 + ~ ) ~ + m -  1) In (1 + E ) -  ( (  1 + E ) ~ -  1) (m+ 2( 1 + ~ ) ~ - 2 )  
4m(( 1 + E ) ~  + m- 1) 

To the next order in a, we find c[ l ]  to  be pure imaginary; so it does contribute to  the 
stability : 

- V-lL (3.3) 

where fl and fi are lengthy algebraic expressions detailed in the appendix to CBJ. 
We study the linear stability for long waves in the limit of small film thickness 

( E + O )  by Taylor expanding (3.4) in powers of E :  

The first square-bracketed term on the right-hand side of (3.5) represents the 
destabilizing effect of the circumferential curvature ; the stabilizing effect of the 
longitudinal curvature enters at a higher order in a. The second square-bracketed 
term represents the contributions of viscosity and density stratification. Equation 
(3.5) indicates that viscosity stratification has a stabilizing effect when m < 1 for 
both downflow (F > - 1) and upflow (F < - 1) and a destabilizing effect when 
m > 1. On the other hand, density stratification has a stabilizing effect for downflow 
and a destabilizing effect for upflow when 1 > 1 and the opposite when 1 < 1. From 
(3.5) we draw four important conclusions concerning the effects of capillarity, and 
viscosity and density stratifications for long waves on thin films. First, for R i  of order 
one in E ,  the destabilizing effect of capillarity can only compete with the stabilizing 
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FIGURE 2. Comparison of the lubrication results with the exact solution for long waves (a+O) at 
J* = 2000. (a) Comparison of the o rde r2  with the order-2 solution for E = 0.1. (b) €-dependence 
for the order-2 solution: -, ---, , exac t ;  ---, ...... , lubrication results. 

effect of viscosity stratification (m < 1) when J is of order l / ~ .  Second, the influence 
of density differences is one order in E higher than viscosity stratification. Third, when 
the fluids are viscosity matched, competition between stabilizing density strati- 
fication occurs for J = O(1). Lastly, we note that the expansion (3.5) is non- 
uniform in m as m --f 0. The region of non-uniformity appears to be of order E because 
it is at this order of m that the e2 and e3 terms become comparable. Below we extend 
these observations for small a to a theory valid up to order one in a. 

As mentioned in the introduction, neutral curves of R, against a intersect the 
ordinate at  a single point. This point derives implicitly from (3.4) by setting c['l = 0 
and is given by 

This value is a critical Reynolds number since on the a = 0 axis, the longest waves 
are stable for R, > R,, and are unstable for R, < R,,. This region of global stability 
typically starts either at R,, or at  a value of R, close to R,,. 

Expanding R& in (3.6) in powers of E gives us our first opportunity to evaluate how 
well an asymptotic expansion in E reflects the exact stability picture as E + 0 : figure 
2 ( a )  compares the exact solution to (3.6) with the order-s2 and -c3 approximations to 
it as a function of m for E = 0.1,1= 1 and J* = 2000. It is clear from figure 2 ( a )  that 
the  order-^^ expression is a significant improvement over the order-E2 expression. 
Figure 2 ( b )  compares the agreement for different values of E .  It demonstrates that for 
fixed E the agreement begins to break down for m of order E ;  this is consistent with 
the fact that the region of non-uniformity in m of (3.5) is of order E .  As E increases 
not only does the applicable range of m decrease, but also the accuracy of the e3 
approximation decreases. 

4. Asymptotic expansions 
In this section we derive the asymptotic expansions in the scaled film thickness E 

as E + O  for a Reynolds number that is order one in E .  The axial lengthscales in the 
film and in the core, and the radial lengthscale in the core remain order-one 
quantities while the radial lengthscale in the film is small ( O ( E ) ) .  Thus lubrication 
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equations will be valid in the film. In order to separate the radial lengthscales in the 
film and in the core, we introduce a new, order-one, stretched film variable y given 
by 

r =  1+c-cy. (4.1) 

This stretched film radial scale forces the radial derivatives in the film to be large 
(O(l/e)) ,  whereas they are order one in the core. This will motivate a set of scalings 
which, as we shall see, agrees with that suggested from the long-wave analysis (cf. 
(3.5)) given earlier. 

From the problem formulation in $2, one can see that the perturbation flows derive 
from the interfacial displacement q appearing in the normal and tangential stress 
balances and in the continuity of axial velocity boundary conditions. As such, the 
circumferential curvature forces ( J  =k 0) in the normal stress balance can generate a 
perturbation pressure, the viscosity stratification (m $. 1)  can generate a large 
perturbative axial velocity or the density difference (1 $: 1) can cause a perturbative 
tangential stress ; in principle, any one or any combination of these effects can drive 
the perturbation flows. 

In typical, thin, lubricating film problems, it is the large perturbation pressure 
that sets the variables’ scales. As we shall see below, this important case leads to a 
set of consistent scalings that are relevant to liquid-liquid displacement in rock 
pores. Interestingly, essentially the same scales and their resulting analysis will 
apply even when the surface tension is no longer as overwhelming. Thus, we shall 
construct an analytic structure sufficiently general to encompass all cases where F 
and R i  are order one or less in e ,  J is of any order in e and m is asymptotically larger 
than c. The resulting asymptotic expressions for the growth rate ci will be valid for 
any e-orderings of these parameters in these ranges ; insertion of a chosen set of such 
asymptotic orderings into c will immediately yield the dominant effects for the flow’s 
leading-order linear stability. The long-wavelength analysis (3.5) basically foresaw 
this confluence of formalism for the various regimes. 

Let us begin with the first case where the circumferential curvature induces a 
pressure perturbation across the interface that sets the fluids in motion and drives 
the lubrication film flow. In  the stream function formalism, one uses the first-order 
equations of motion to represent the perturbation pressures in terms of Y. In  the 
normal stress balance (2.16), the first-order derivatives are the viscous normal 
stresses while the third radial derivative terms and the terms multiplied by rW; are the 
perturbation pressures. Since radial derivatives in the film are large, the third- 
derivative term for the film must balance the curvature terms: 

m 1 d3$ J 
iare3 dy3 R i  

= -(a2-1)q. 

Since a,  q, m and r are all order-one quantities, the tension of the perturbation’s 
curvature induces a film flow of order 

+2 - Je3/Ri .  

The continuity of axial velocity a t  the interface (2.14) is the source of Yih’s viscous 
stratification instability. For m $: 1, the order-one term ( w ! ~  - wir) 7 represents, in 
linearized form, the discontinuity of the base flow at the disturbed interfacial 
position. This introduces a perturbation to the core velocity ( l / r )  (d$Jdr) and 
possibly to the film velocity to preserve the continuity of velocity at the interface. 
(If the film quantity alone dominated in (2.14) it would also dominate in (2.15) and 
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overdetermine the film.) Let us first consider the case where the core alone takes up 
this perturbation. Noting that core radial derivatives are order-one quantities gives 
$l N 1 .  As a result both the leading-order continuit,y of radial (2.13) and axial (2.14) 
velocity equations involve only core quantities, while the leading-order normal stress 
balance is purely a film equation. These velocity conditions state that from the 
perspective of the leading-order core problem, the film is radially immobile, and the 
core alone must compensate for the perturbation-generated axial velocity jump. 

In  order not to overdetermine the core, the tangential stress balance must contain 
the dominant film term 

-- md2$2 
e2 dy2 

a t  leading order. Thus, 
Je /Ri  2 - 1. 

Equality in this expression couples the film and core through this boundary 
condition whereas strict inequality would require a surface tension so strong that the 
film alone could accommodate both the shear stress and normal stress perturbation ; 
the film problem would close independently of the core, thereby leading to Plateau's 
instability for a >< 1, i.e. linear growth totally governed by capillarity with 

J / R i  - l /elfs (0 < S < 1) .  

(An even stronger surface tension J / R i  2 l/s2 would naturally also close the film 
problem and lead to  Plateau's instability. It would, however, cause the film to take 
up some ( = ) or all ( > ) of the axial velocity perturbation and raise ( > ) the order of 
Yl in E.) In the case of interest here, a strong yet less overwhelming surface tension 
(i.e. both core and film in the tangential stress balance) 

Je/IWi - N 1 

requires the core to find a radially immobile film, i.e. the perturbation core velocity 
takes up the total axial velocity discontinuity to leading order. Finally, the 
kinematic condition written in a frame moving with the base-flow velocity a t  the 
unperturbed interface in terms of film variables yields ( c -wo( l ) )  - $2. Thus the 
complete set of scales is 

Let us turn now to  the opposite case where the surface tension parameter J is 
smaller, say J < 0 ( 1 )  in 6 ,  as is the case for lubricated pipelining. J, now of reduced 
importance, no longer determines the scales. I n  fact, the third-derivative term for the 
film dominates the normal stress balance (2.16) and is thus zero a t  the interface: 

2miad3$, - 
0 a t  r =  1. 

re3 dy3 

This has at least four pertinent consequences : (i) the perturbation pressure across the 
interface is now zero to leading order; thus, (ii) the leading-order velocity profile of 
the film is linear rather than parabolic; and (iii) the scale on @2 must be 

$2 > O(Je3/Ri),  i.e. J / R i  < O(t+k2/e3); 

and (iv) the leading-order normal stress boundary condition again involves only film 
quantities. 
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From the long-wave analysis, one sees that, when m ji 1, viscosity stratification is 
more important than density stratification, and is therefore the only perturbation to 
drive the flow. In order for the film problem neither to be overdetermined nor to have 
a trivial solution, the core again takes up the axial velocity perturbation and requires 
?,h1 - 1. The O( 1) core flow only exerts an O( 1 )  tangential stress on the annulus which 
only drives an O(s)  axial flow there. Thus (and to avoid overdetermining the core) the 
tangential stress balance must again contain both film and core contributions, which 
finally requires $2 - e2 and c- wo( 1) - E ~ .  From the normal stress balance ( J / R i )  < 
O ( ~ / E ) ,  which for R; = O(1) allows J to be of order one or less, as in lubricated 
pipelining. Viscosity stratification alone (cf. (3.5)) determines the thin-film leading- 
order linear stability according to the sign of m - 1 ; the density difference provides 
an order-s correction. 

Finally, a third set of scales that suppresses viscous stratification (m = l ) ,  shows 
that the density difference drives an interfacial shear which can interact with a weak 
capillarity at  leading order. By similar arguments, 7 causes a perturbation shear 
stress in both phases leading to !PI = O(1), !P2 = O(s2) ,  order-one core flows and O(s)  
axial and O ( 2 )  radial film flows. 

All three arguments above lead to the same derived scales for the dependent 
variables : 

c - WO( 1) = 6 2 ) € 2  + 63)s3 + . . . , 
$2 = $bps2 + $bps3 + . . . , 

(4.3) 

(4.4) 

and 7 = O(1). A single, unified treatment will use (4.3)-(4.5) in (2.9)-(2.17) to 
assemble the leading-order problem whose solutions are expressions for the wave 
speed and the growth rates. As noted, the core dynamics will couple non-trivially to 
those of the film through the mechanisms of viscosity stratification and density 
difference; this will necessitate solution of both the film and the core problems and 
their matching at the interface. 

The derivation of the amplitude equation in terms of the wave speed c using these 
expansions is outlined in the Appendix and the result is 

2a2 2T(a)-N(a) +-I( P ( a )  1 ---)- 1 F + l  (4.7) -[-+ 3m 6am 2a2m2 2 ’  

where J ,  = J s  and N(a)  and T(a),  detailed in the Appendix, are in general complex. 
From (4.6) and (4.7) one can immediately conclude that in the strong-surface-tension 
case [ J  = O(l/e)], the density difference only contributes to dispersion to leading 
order in E .  

Comparison with the long-wave expansion in the previous section suggests that the 
combination of these results for two orders of E will give excellent agreement with the 
exact results. It is interesting to note that in the long-wave limit (a  + 0) (4.6) and 
(4.7) reduced to (3.5) by asymptotically taking the limit of N(a)  and T(a)  as (a+ 0) : 

R:(F+ 1) a2 

48 i, limN(a) = - 401 - 
a+O 
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and 
R;(F + 1) a'. 

48 
1. limT(a) = -4a+ 

a+O 

It is also important to note that if the flow becomes asymptotically slow, i.e. R i  = 
O ( E )  the complex Kummer functions reduce to real-valued modified Bessel functions. 
Thus, to this order, viscosity and density stratifications contribute only dispersion in 
this limit. In fact, this is also true for the exact problem (i.e. even for thick films) for 
asymptotically small values of R;. 

The main task in the numerical calculation based on (4.6) and (4.7) that appears 
below is the accurate evaluation of the kernels N ( a )  and T(a)  for each value of a. For 
moderate values of a we use an NCAR Bessel function package to calculate the Bessel 
functions. The calculation of the Kummer functionM(A, 2, 2Ar2) is more complicated, 
however. Following Papageorgiou, Maldarelli & Rumschitzki ( 1990) we obtain the 
Kummer function for each a by numerical integration of the ordinary differential 
equation (A 1) (in terms of g ( r )  where D$Y) = g ( r ) )  in the complex plane along a 
contour joining 0 to  2h. For convenience we use a straight line contour and store the 
values of M a t  the mesh points in order to compute N,(a) and N2(a)  by quadrature 
from (A 19) and (A 20). A fourth-order Runge-Kutta method is used to perform the 
integration of the differential equation and Simpson's rule for the quadrature. 
Refinement tests are made to ensure numerical convergence. The extension to 
negative values of a follows from the identity 

N( -a) = -N*(a), (4.8) 

where * denotes complex conjugate. When a contour from 0 to 2h* is used in the 
computation of a Kummer function in the complex plane (as in the case of upflow 
(F < - l)) ,  the result is N*(a). With the kernels known numerically, the numerical 
implementation is now complete. 

5. Results and discussion 
5.1. Neutral curves 

We begin with a discussion of neutral curves. Neutral conditions follow by equating 
the imaginary part of c to zero. This leads to an implicit dependence of R; or F on 
the critical wavenumber a which may be expanded in E :  

(5.1) 

P = F(O) + . . . . (5.2) 

R; = R;(O) + R;"€ + . . . , 

Inserting either of these expressions into the defining relation for the neutral state, 

Im [c(R;, F ,  8, J ,  m, a)]  = 0, 

and noting the expansion for c ,  leads to equations for the expansion coefficients in 
(5.1) and (5.2). For example, in terms of the Reynolds number: 

Newton-Raphson-based schemes provide numerical solutions for R r  from (5.3) ; 
Ri'l' is obtained by evaluating the derivative in (5.4) numerically. The determination 
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FIGURE 3. The €-dependence of the free-fall flow neutral curves (R, vs. a) ( E  = 0.2 (-), 0.1 
(----), 0.05 (---), 0.01 (......)) and comparison with CBJ (A, 0) .  1 = 1, m = 0.5, J* = 2000. 
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FIGURE 4. The I-dependence of the free-fall flow neutral curves [Rg vs. a] for m = 0.5, J* = 2000 
( 1  = 0.5 (-), 1.0 (---), 2.0 (---)) and comparison with CBJ ( 1  = 0.5 (+), 1.0 (A), 2.0 (0).  
(a) E = 0.1, ( b )  E = 0.2. 

of further terms in (5.1) and (5.2) requires expanding c to higher order. However, 
we show below that the two-term expansion is usually sufficient for e < 0.2 when 
m > O(e) .  

5.1.1. The case of the less viscous annulus (m < 1 )  
Figure 3 shows neutral curves for pure gravity-driven flow for different values of 

the film thickness e .  From this figure one can see that the agreement between our 
asymptotic calculations (lines) and CB J's results (points) is excellent even for 
relatively large values of E ( E  < 0.2). These curves demonstrate CBJ's result that 
viscosity stratification stabilizes the capillary instability and that this stabilization 
becomes more effective the thinner the film, i.e. it becomes stable at smaller values 
of R,. Figure 4 ( a ,  b)  also shows R, us. a neutral curves but for different values of 1 
with m, J ,  and F as in figure 3. As noted in the last section and evident in figure 4, 
the influence of I =!= 1 is an order-e effect on the 1 = 1 neutral curve. It is apparent 
from the very good agreement with CBJ that this provides a sufficient description of 
this effect for thin films. For E = 0.2, 1 + 1,  the agreement is less satisfactory. Since 
the effect of 1 9 1 on growth first enters at O(e3),  it is thus only accounted for here to 
its leading order in E .  In particular, for 1 = 2, a smaller value of E is needed for order- 
E accuracy in R,. For I = 0.5, CBJ's curve is actually no longer of the canonical form 
displaying global stability. In fact the branch beginning from the R,-axis increases 
rapidly to high values of R, beyond a - 0.3 and thus lies outside the domain of our 
order-one R, theory. Again, as CBJ note, one should use a heavier lubricant to 
achieve stability at lower values of R, for pure gravity-driven flows. 



666 E.  Georgiou, C .  Maldarelli, D. T .  Papageorgiou and D. S .  Rumschitzki 

1.0 

0.5 
F 

0: 

-0.5 

-1 .0 '  

0.5 

0 

-0.5 

F -1.0 

- 1.5 

-2.0 

-2.5 
0 0.2 0.4 0.6 0.8 1.0 a 

Stable 
2 _ _ _ _ -  ------__ . 

\ 
\ 
\ 
\ 
\ --. '\ -_  -- : _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

Unstable 
: 

' ' ' . ' ' ' ' 

Stable 

-0.5 

F -1.0 

- 1.5 

Unstable 

-2.0 

-2.5 
0 0.2 0.4 a 0.6 0.8 1.0 

FIGURE 5. The I-dependence of the forced-flow neutral curves IF vus. a] for E = 0.1, m = 0.5, 
J* = 2000 (2 = 0.5 (1-), 1.0 (--). 2.0 (-.....)) and comparison with CBJ ( I  = 0.5 (+ ) ,  1.0 (A), 
2.0 (0). 

Figure 5 shows a neutral curve F us. CL for a forced flow for various values of the 
density ratio 1 with the other parameters as in CBJ. Again the agreement is excellent 
and confirms CBJ's results that  for forced flow heavy lubricants are stabilizing for 
downflow (F > - 1 )  and light ones for upflow ( F  < - 1) .  It is also interesting to note 
that when 1 = 1 ,  the neutral curves are symmetric about F = - 1. This is also clear 
from the equations. Since the term F +  1 only enters the stability problem through 
the base flow and since for 1 = 1 a change in sign of F + 1 just changes the direction 
of the base flow, such a change cannot affect the stability. 

The final forced-flow neutral curve (figure 6) for m < 1 ,  not given by CBJ, 
examines the effect of the viscosity ratio m. For downflow there exist a critical 
pressure gradient above which the system is stable and the pressure gradient needed 
for stability becomes smaller as the viscosity ratio gets smaller (see figure 6). The 
upflow region of this graph is not shown on this figure because for 1 = 1 the upflow 
curves are a mirror image of the downflow curves. As m increases the unstable lobe 
increases into a range of F in which the theory is no longer valid. 

5.1.2. The case of the more viscous annulus (m > 1 )  

Since our concern is CAF stability in the context of liquid-liquid displacements of 
oil by water, the m > 1 situation is pertinent. Since F ,  unlike R,, is proportional to 
the experimentally manipulated pressure gradient, we present only the (F vs. a)-type 
neutral curve. For m > 1 (figure 7)  viscosity stratification is destabilizing and thus 
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1.0 1.2 1.4 cI 1.6 1.8 

FIGURE 7. The m-dependence of the forced-flow neutral curves [F vs. a] for E = 0.1, 1 = 1, R: = 150, 
J* = 2000 and m > 1 (m = 2 (-), 10 (---), 100 (---)). 
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FIGURE 8. The l-dependence of the forced-flow neutral curves [F vs. a] in the absence of viscosity 
stratification (m = 1)  for E = 0.1, J* = 10, R, = 10 ( I  = 0.1 (-), 0.5 (---), 0.8 (---), 1.0 (--), 
1.2 (......), 2.0 (---), 10.0 (----)). 

the band of unstable waves contains at least the band 0 < a < 1. In  fact, this band 
grows as F or, in fact, as R, (not shown) increases. Note again that for the 1 = 1 case, 
the upflow curve is just the reflection of the given (downflow) curve about F = - 1 .  
Hu & Joseph (1989) reported similar neutral curves [(R us. a )]  for fixed m > 1, but 
larger values of J .  

5.1.3. The case of equal viscosities and unequal densities ( m  = 1, 1 =I= 1) 

As mentioned in $4, in the absence of viscosity stratification ( m  = 1) the density 
difference itself can compete with capillarity for moderate surface tension ( J  = O( 1 ) ) .  
This is shown in figure 8 where we give neutral curves for different values of the 
density ratio 1 for m = 1, J* = 10, lR; = 10, and E = 0.1. Obviously, the neutral curve 
at a = 1 represents pure capillarity, the only surviving effect when 1 = 1. From this 
figure one sees that density stratification plays the same qualitative role as in the 
case m c 1, where it had only an order-s effect on the stability. That is, heavy 
lubricants are stabilizing for downflow and destabilizing for upflow, while for light 
lubricants the opposite is true. The only difference is that in the absence of viscosity 
stratification, the density difference becomes a leading-order effect which can 
stabilize the capillary instability for sufficiently large pressure gradients that are 
downwards for heavy lubricants and upwards for light ones. Note that the figure 
displays a certain symmetry : when 1 is replaced by 2 - 1 (for 2 2 1 2 0) and F by 
( - 2 - F ) ,  the curve remains unchanged. This, again, follows because the base flow 
simply changes direction upon these replacements. 

22 F L Y  243 
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FIGURE 9. The m-dependence of the wavelength of maximum instability curves [A,  vus. F ]  form Q 1, 
6 = 0.1, J* = 2000, R, = 10, 2 = 1 ( m  = 0.4 (-), 0.5 ( -  - - ) ,  0.6 (---), 0.7 (......), 0.8 (--A), 0.9 
(-----), 1.0 (--)). 
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FIUURE 10. The m-dependence of the maximum growth rate curves [w,, us. F ]  for m < 1, E = 0.1, 
J* = 2000, R, = 10, 1 = 1 (m = 0.4 (+), 0.5 (A), 0.6 (O) ,  0.7 (+), 0.8 (A), 0.9 (0)) .  

5.2. Growth rates 
This brings us to a discussion of growth rates. We begin with the large-surface- 
tension, less viscous annulus situation, where we choose F to lie within the unstable 
lobe a t  the lower left of the canonical neutral curve. In  figure 9 we show the 
wavelength of maximum instability from the linear analysis. For m = 1,  there is no 
viscous stratification, and the wavelength of maximum instability is just the value 
determined by pure capillarity, which is independent of F. On the other hand, as m 
decreases from one, the film becomes less viscous and the effect of viscous 
stratification grows. The neutral curves exhibit this in that the intersection point of 
the neutral branch defining the surface-tension-derived unstable lobe with the F-axis 
decreases to - 1.  Similarly, since the maximally unstable wave is closely related to 
the critical wave, the curves in figure 9 (also symmetric about F - 1 = 0) diverge a t  
values of F that also recede towards F = - 1 as m decreases from one. 

The corresponding maximum growth rates (cf. figure 10) display competing 
effects. First, as the film becomes less viscous (i.e. m decreases from one), the system 
stabilizes, i.e. the maximum growth rate goes to zero, at lower values of F. Second, 
however, for values of F sufficiently far into the unstable region, the less viscous the 
film is, the less viscous resistance can inhibit the growth of unstable waves ; thus 
small-m systems will grow faster than those with larger m values. This accounts for 
the cross-shape in figure 10. 

Finally, we turn to the m > 1 and large- J case where, as already discussed, viscous 
stratification acts to destabilize the system (for small 8). The first trend that is clear 
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FIGURE 11.  The m-dependence of the maximum growth rate curves [w,, vs. F ]  for m > 1 ,  E = 0.05, 
J* = 2500, R: = 150, I = 1 (m = 2 (+ ) ,  10 (A), 100 (0)). 

in figure 11 is that as F increases and the unstable band of waves broadens, the 
corresponding maximum growth rates also increase. The second trend is that as the 
film becomes more viscous, the maximum growth rates decrease ; this is just the same 
effect that explained the left side of figure 10. 

6. Stability of wetting layers in low-capillary-number slug flows 
6.1. An asymptotic theory in terms of Bretherton’s scales 

When an aqueous phase displaces oil in a rock pore, slug flow regimes can arise in 
which the non-wetting phase takes the form of a train of long slugs moving over, and 
separated by, the wetting liquid. These flows are usually at  very low capillary and 
slug-phase Reynolds numbers, where, in the notation of this paper, C = p2 U / a  and 
[w = p1 VRl/p l  and U is the slug velocity which for thin annuli is just gV. 

Bretherton (1961) studied the motion of a long gas slug moving through a 
Newtonian liquid filling a straight cylindrical tube at  low capillary and Reynolds 
numbers. Bretherton divided the slug interface and surrounding fluid into five 
regions: (i) a centre region where the wetting layer achieves a constant thickness; (ii) 
two tip regions where capillary forces are important and the interfacial shapes are, 
to leading order, sections of spheres; and (iii) two transition regions which bridge the 
tips and the constant-wetting-layer regions and in which capillary and viscous forces 
are both important and the wetting-layer fluid mechanics is described by the 
lubrication equations. By matching solutions is each of these regions in powers of the 
capillary number to the one-third power, Bretherton established the following 
leading-order equation for e as C + 0 : 

e = 1.337C;+O(Cf). (6.1) 

Park & Homsy (1984) re-examined Bretherton’s problem for the case of interest here 
of a liquid slug, and demonstrated that the above expression for 8 remains valid as 
long as the viscosity ratio m is larger than 42;. 

We use Bretherton’s result to develop a theory for the stability of the wetting layer 
around a long liquid slug at  low capillary numbers. We neglect density differences 
and express the stability equations in terms of [w rather than F and [w, by the 
identification 

(F+ 1)  (a2-  1 + m )  
[w;. [w=----- 

4 m 
22-2 
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The growth rate may be expressed as an asymptotic expansion in Ci by introducing 
Bretherton’sexpressionforeinto (4.6) and byequatingJ/(mR) to 1/(2C). Theresult to 
order Cd is 

ImN(a)Cf+O(@$) 
1.337. a2-1 

ci = - ( 1.337)2C la - 

where c is now non-dimensionalized by the centreline velocity as in Preziosi et al. 
(1989). In the expression (A 14) for h used in defining N(a) ,  (6.2) replaces f (F+ 1)  IW i  
by R. Recall that (4.6) is valid for m > E or m > d and the Bretherton expression is 
valid for m > Ci. Since the latter is the more restrictive on m for C 4 1,  the above 
expansion in C is valid for m > Cf. Even with this restriction, one can draw some 
very interesting asymptotic conclusions regarding the growth dynamics : 

(i) When m < 1 (oil slugs in water) and Cf is in the range m > Cf > m2, the 
stability is dominated by the stabilization due to viscosity stratification. 

(ii) When m < 1 (again oil slugs in water), and Cf is smaller than or of the same 
order as m2, capillarity competes with and then dominates the stabilizing effect of 
viscosity stratification. 

(iii) When m > 1 (water drops in oil), for all C < 1 ,  viscosity stratification is 
destabilizing, but capillarity dominates. 

Equation (6.2) can be the basis for constructing stability plots in (R, C)-space for 
fixed m < 1 .  By setting the imaginary part of c equal to zero, one obtains 

a(a2-1) 1 
0 = 1.337 6 +- am( I - -  A) Im(N(a))Ci. 

One can calculate neutral stability plots of R against 01 for fixed Ci and m that would 
be of the same form as the R, ‘us. a plots of $5. We suspect that for a fixed, small value 
of e (and hence of C) and m < 1 ,  there is a range of m larger than Cf yet small enough 
that the lower branch of the neutral curves (e.g. figures 4, 5 and 6) is monotonic. In  
such cases, R,, just the limit of (6.3) as a+O given by 

is the beginning of the window of global stability. The above equation defines a lobe 
in the (Ci,(W)-plane with unstable values lying inside the lobe. In view of the 
approximations involved in deriving (6.4), m must be less than one and Ci must be 
smaller than m. Also note that these approximations require that R be of order 1 in 
e or Ci. From (6.4) it is clear that this will be the case as long as Cf is larger than m2; 
so (6.4) is valid for m < 1 and for capillary numbers in the interval m > Cf > m2. 

One can use (6.4) to determine critical velocities above which oil slugs travel over 
linearly stable, thin water wetting layers. For such stable cases R > R, and therefore 
(6.4) leads to 

As a typical example, consider oil slugs of unit specific gravity and ,ul = 10 cP, 
travelling over a water film (,u2 = 1 cP) with an interfacial tension of 10 dynes/cm 
in a 250 pm diameter pore. The slug-film interface is linearly stable for U > 0.6 cm/s. 
However, inasmuch as the Bretherton theory breaks down for C f > m ,  this 
prediction formally holds only to U x 1 cm/s for the numbers given. Naturally, one 
would hope that the situation would not change qualitatively on exceeding the 
Bretherton restriction. 
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6.2. The unstable case; Au l  &: Olbricht’s experiments (m > 1) 

Aul & Olbricht (1990) performed experiments in which water displaced a much more 
viscous, immiscible fluid (glycol) of very similar density at low capillary numbers in 
a glass capillary with an inner diameter of 54 pm. They studied the stability of the 
wetting layers by video microscopy and observed undisturbed film thicknesses of 
1-2 pm, or E - 0.04-0.07. Their experiments always yielded unstable wetting layers 
in the sense that interfacial disturbances grew and eventually pinched off the core. 
Aul & Olbricht observed the wavelength A, and wave speed c, of the maximally 
growing unstable waves in these experiments. To compare theory with experiment, 
they neglected the effect of flow and calculated the value for A, arising purely from 
capillarity (which, as we shall see below, is exactly the leading-order term that results 
from our analysis). In  addition, based on the assumption that the wave simply 
convects with the base velocity, they calculated a theoretical value for the wave 
speed. Their theoretical value for A, agrees quite well with the experimental value, 
although that for c, does not. 

Since Aul & Olbricht’s experiments do indeed contain thin films, our theory should 
be able to address the validity of their neglecting of flow in the prediction of A, and 
of using only the convecting base-flow interfacial velocity for c,. The parameters of 
the experiments are R = 0.0173-0.0403; J - 90 and m = 19,80, 173, where we have 
converted Aul & Olbricht’s Reynolds numbers to our definition, as do Hu & Joseph 
(1989). We take R = R,E, J = J 0 / e  and m = m, with m,, J,,  R, of order one. Using 
these values in our asymptotic analysis gives the leading orders of the real and 
imaginary parts of c non-dimensionalized with the centreline velocity as in (6.2) as 

ci = -s2[J,/(3m,R,)]a(a2-1)+O(s3), (6.6) 

E~ Re “(a ; R = O ) ]  
m0 a cr-wO(l)  = c , - ( 2 ~ ~ / m , ) + O ( ~ ~ )  = -- + o(E4). (6.7) 

Note that the leading order of c-wo( l )  is purely imaginary and is exactly the 
expression used by Aul & Olbricht. Thus the leading order of c, is O(s2), and is in fact 
simply the leading order of the base flow interfacial velocity. Thus Aul & Olbricht 
were correct (to leading order) in their neglect of viscous stratification in calculating 
the wavelength of maximum growth, and that is why A, is independent of R in their 
experiments. 

In fact, these values for A,, as well as those for the leading-order growth rate 
(obtained in the usual way from the expression for ci and are thus also independent 
of R to leading order), agree very well with those listed in table 4 of Hu & Joseph, 
who also examined Aul 6 Olbricht’s data, calculating their numbers from the full, 
numerical solution of the Orr-Sommerfeld equations. The agreement between our 
equation (6.7) and Hu & Joseph’s predictions for the wave speed is also very good (to 
within loo/,). As a result, we believe that use of our asymptotic theory can be an 
excellent, simple guide for determining which will be the dominant effects in 
experiments with thin, annular films. 

To determine which mechanism (viscosity stratification or capillarity) mainly 
drives the instability observed by Aul & Olbricht, Hu & Joseph did an energy 
analysis. In  view of our having an explicit, asymptotic expression for the growth rate 
c, it seems superfluous at  this point to perform Hu & Joseph’s energy analysis for 
systems with thin annular films. 
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7. Weakly nonlinear interfacial evolution 
An important aspect of developing a linear theory in the thin-film-thickness 

asymptotic regime, is its capability of readily producing the dominant weakly 
nonlinear system out of a gradual linear instability by ordering the disturbance 
parameter Sin (2 .6 )  and (2 .7 )  with B .  (A much larger initial disturbance would make 
both linear and weakly nonlinear theories redundant.) Such analyses have been 
performed by Papageorgiou et al. (1990) for the present geometry and for m < 1, but 
without density differences between the phases ; the same formal procedure can be 
applied here also and the interested reader is referred to Papageorgiou et al. for 
details. 

The main outcome of the asymptotic analyses of Papageorgiou et al. is the 
derivation of nonlinear evolution equations for S = O(s2) by incorporation of weak 
nonlinearities (as in the Burgers equation, for example) along with the linear operator 
that derives from the linear stability theory. Thus, it is easy to see that the evolution 
equation corresponding to our dispersion relation (4 .6 )  is given by 

2 F + 1  JO (1 -1 )  . ( m - l ) F + l  
T T  - m 4  T l l z  +- ( T z z  + T z z z z )  -2m T z  - 1 ~- 2nm2 4 

x J:mN(a) ~ ( d ,  7) eia(z-z’) dz’ d a  = 0, (7 .1 )  

where T = e2t is a stretched time. Equation (7 .1 )  above covers a wide range of 
physical situations and is the result of ‘large ’ surface tension as explained earlier. In  
the regime where J / R i  is order one and m = 1, disturbances grow on a relatively 
longer timescale (of order l /e3 in fact) by virtue of the relative magnitude of density- 
difference instabilities (note that to leading order, a dispersive effect appears which 
is removed by a suitable Galilean transformation). The spectrum for this case is given 
by (4 .6)  and ( 4 . 7 )  and the evolution equation is 

F + l  J ( 1 - 1 )  ( 1 - 1 )  
T,- 2 4 TTZ + * ( T z z  + T z z r e )  +g T z  + i 7  

m 

x [ ~ ~ i V ( a ) [ - ~ ~ ( z ’ , r ) e ’ “ ( ~ - ~ ‘ ) d z ’ d a  = 0. (7.2) 

Most of the qualitative features of both evolution equations (7.1) and (7 .2 )  have 
been explained by the numerical experiments of Papageorgiou et al. For instance, 
these experiments indicate that in the presence of capillarity the large-time nonlinear 
evolution of the system remains bounded and can, in many cases depending on 
relative magnitudes of flow parameters, produce intricate and varied behaviour 
ranging from trivial solutions to steady-state travelling waves to highly oscillatory 
chaotic behaviour. There is one regime, however, which is different and merits 
further discussion. This weakly nonlinear evolution arises from the problem of 
‘ small ’ surface tension characterized by J - 1 and R i  - 1. The evolution equation is 
obtained by setting J o  = 0 in (7.1) above and so the equation contains the viscosity 
stratification mechanism alone (similar comments and conclusions also apply for 
(7.2), again with J = 0). The flow becomes linearly unstable or stable depending on 
whether m is greater than or less than unity, respectively. The unstable case m > 1 
has some novel nonlinear consequences and we describe a possible scenario next. 
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The large-wavenumber (short-wave) behaviour of the kernel N(a) is of particular 
importance. The asymptotic behaviour is N(a) + 01 la1 as a + co. So short waves, in 
the case m > 1 at least, grow the fastest and there does not exist a regularizing cutoff. 
The problem is then expected to break down within a finite time (note that special 
initial conditions need to be used - see comments and analysis in Papageorgiou & 
Smith 1988), the dominant structure being a shock formation in the interfacial 
shape. This shortening of axial lengthscales will invalidate our original assumptions 
of 0(1) wavelengths and bringing a new shorter lengthscale, governed by the 
structure of the finite-time singularity. New physics enters through the upgraded role 
of the surface-tension terms which are now in balance with viscous stratification due 
to the shorter scales involved. Overall then, the shock is expected to be smoothed out 
by the new physics that comes into play, and the final waveform should look like a 
saw-tooth wave. We note that this is merely a suggestion as to the final behaviour 
of the system when J = 0(1) and R i  = O(1) .  

8. Summary and conclusions 
We have developed an analytic asymptotic theory for the linear stability of a 

vertical, perfectly concentric, core-annular axial flow in the limit in which the 
annular gap (R,-R,) is much thinner than the core radius R,, i.e. 

B = (R, -R,)/R, < 1 .  

Our theory includes the stability-determining factors : viscosity and density 
stratification through the ratios of the film to core viscosity m( = ,u,/yl) and density 
1( = p z / p l )  ; interfacial tension v through J( = R, apl/,u;) ; and gravity and pressure- 
driven forcing through, respectively, a Reynolds number Ri( = p; gR:/,u;) and the 
ratio F (  = (-dP/dz)/(p,g)). A new, analytical, asymptotic expansion in B of the 
complex wave speed complete to order e3 results for the general case of m and 1 of 
order one, F and R: of order one or less and J of arbitrary order. It allows a clear, 
asymptotic ordering of the destabilizing forces in terms of B .  In particular, capillarity 
first enters the growth rate at order Je3/mRi, while, for R i =  O ( l ) ,  viscosity 
stratification contributes at order (m-  1 )  E2/m2 and density at  orders (1- 1)  e3/m and 
(Z- 1)  e3/m2. In addition, viscosity and density are strongly dispersive : they both 
generate a leading-order (O(2))  wave speed in the frame travelling with the interface 
velocity. Certain conclusions, valid as E +  0, follow immediately. (i) The film’s inertia 
is not important and is a second-order effect. (ii) For moderate surface tension, 
viscosity stratification dominates and the system is stable when the less viscous fluid 
is in the film and unstable when the less viscous fluid is in the core. (iii) For strong 
surface tension, capillarity competes with viscosity stratification, and (iv) density 
stratification is purely dispersive to  leading order ; its stability contribution is a 
second-order effect. Finally, for films of sufficiently low viscosity, viscosity 
stratification and capillarity determine the growth rates of wetting layers in slug 
flows. 

Our asymptotic theory depicts the linear stability for thin films very well. 
Comparison with results of Joseph and co-workers who numerically solved the 
Orr-Sommerfeld equations shows excellent agreement (cf. figures 3 , 4  and 5 ) ,  for E as 
large as 0.2. 

The expansion also leads to new linear stability results for wetting layers in low- 
capillary-number C liquid-liquid displacements, where E scales as 0. The resulting 
expression (in C;) for the wave speed includes both capillarity and viscous 
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stratification and provides a guide for determining which effects dominate wetting- 
layer stability in a particular flow regime. It correctly predicts the liquid-liquid 
displacement experiments of Aul & Olbricht ( 1990), and verifies their assumption 
that capillarity dominates their flow regime. 

Finally we follow instabilities to  the weakly nonlinear regime by deriving 
interfacial amplitude equations. These non-local Kuramoto-Sivashinsky-like 
equations contain a nonlinear term arising from the shear nature of the base flow, 
which shocks the interface into shorter scales, and an  interfacial tension term which 
acts to stabilize precisely those scales. In  lubricated pipelining, m < 1 and capillarity 
effects are less important ( J  < O(1)); the interplay with capillarity a t  a later stage 
may lead to  a sharp, saw-toothed interfacial shape. 

Appendix 
Substituting the expansion (4.3)-(4.5) into the governing equations and boundary 

conditions of a system with new coordinates travelling with the base-state velocity 
a t  the interface [wio)(l)] of the base state, we get, to  leading order in E 

and 

F + l  
4 

D(D$Y)) = iaR~---(l-r2)D$~o), 

0 at  r = y = l ,  

(2) 

D$f“ - m - d2$y) + 2 a 2 ( l - m ) $ ~ o ) + ( l - 1 ) ~ - 0  @2 - a t  r =  y =  1, ( A 5 )  
dY 

where J ,  = J s  and = c - wo( 1) = 62)s2 + e‘3)s3 + O(s4). 
The next order in 8 gives 

F+ l  
4 

D(D$\l)) = iaR;- (1 - r 2 )  D$\l), 
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and 

d 
dr 

+ia-(D$y)-2a2$y)) at r = y = 1. (A 12) 

Following Papageorgiou et al. (1990) and Pekeris (1948) one can solve the leading- 
order core problem in terms of Kummer or confluent hypogeometric functions 
M ( A ,  2, hr2) (see Abramowitz & Stegun 1972), where 

A = 1 + a2/8h - A/2, 

and A = + [ ~ R ; ( F  + I)]: e-*n/4. (A 14) 

(A 13) 

The solution for the stream function in the core becomes 

The solution in the annulus that satisfies no slip at  the wall (y = 0) is 

$.f) = A ,  y3 + B, y2. (A 17) 

Applying the leading-order interfacial boundary conditions (A 3)-(A 6) we get a 

A - x  = 0. (A 18) 

(4 x 4) system of equations of the form 

The matrix 

A =  

(1 --)- 1 F + l  -( 1 --)- 1 F+1 
m 262) m 2dZ) 

0 0 

in (A 18) contains the coefficients of the constants of integration in these linearized 
boundary conditions. The constants appearing in A are 

N,(a) = [I,(a)K,(at) -Il(at)K1(a)] t2 e-A\tzM(A, 2, 2At2) dt, (A 19) 

(A 20) 

J: 
1 

N,(a) = 1 [l,(a)K,(at) +Il(at)K,(a)] t2e-%4(A, 2,2At2) dt. 
0 

Finally x is the vector of the constants of integration 

x = [&B,,A,,B,It. (A 21) 
The amplitude equation follows by solving the equation det (A )  = 0 in terms of the 
wave speed 6” (to order 2); the result is (4.6), i.e. 
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b =  

where 

- 0 - 
( I - l / m ) ( F + l )  

(E-1) 1 

( 62' ( + $) - 3m) A + ((I ~$0)) + Zm)B2 

which is, in general, complex. 
The general solution to the governing equation in the core remains the same to the 

next order in E but the solution to the governing equation in the film that satisfies 
no slip on the wall becomes 

Applying the second-order boundary conditions (A 9) to (A 12) we get a system of 
equations of the form 

A * x  = b, (A 24) 

Using the solvability (adjoint) method we solve (A 24) for the wave speed 63) (to 
order s 3 ) ;  the result is (4.7), i.e. 

2a2 2T(a)-N(a) -[-+ 3m 6am 

where 

which is also, in general, complex. 
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